Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.931
Filtrar
1.
JAMA Oncol ; 8(11): 1624-1634, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136325

RESUMEN

Importance: Atrial fibrillation (AF) can develop following thoracic irradiation. However, the critical cardiac substructure responsible for AF has not been properly studied. Objective: To describe the incidence of AF in patients with lung cancer and determine predictive cardiac dosimetric parameters. Design, Setting, and Participants: This retrospective cohort study was performed at a single referral center and included 239 patients diagnosed with limited-stage small cell lung cancer (SCLC) and 321 patients diagnosed with locally advanced non-small cell lung cancer (NSCLC) between August 2008 and December 2019 who were treated with definitive chemoradiotherapy. Exposures: Radiation dose exposure to cardiac substructures, including the chambers, coronary arteries, and cardiac conduction nodes, were calculated for each patient. Main Outcomes and Measures: Main outcomes were AF and overall survival. Results: Of the 239 and 321 patients with SCLC and NSCLC, the median (IQR) age was 68 (60-73) years and 67 (61-75) years, and 207 (86.6%) and 261 (81.3%) were men, respectively. At a median (IQR) follow-up time of 32.7 (22.1-56.6) months, 9 and 17 patients experienced new-onset AF in the SCLC and NSCLC cohorts, respectively. The maximum dose delivered to the sinoatrial node (SAN Dmax) exhibited the highest predictive value for prediction of AF. A higher SAN Dmax significantly predicted an increased risk of AF in patients with SCLC (adjusted hazard ratio [aHR], 14.91; 95% CI, 4.00-55.56; P < .001) and NSCLC (aHR, 15.67; 95% CI, 2.08-118.20; P = .008). However, SAN Dmax was not associated with non-AF cardiac events. Increased SAN Dmax was significantly associated with poor overall survival in patients with SCLC (aHR, 2.68; 95% CI, 1.53-4.71; P < .001) and NSCLC (aHR, 1.97; 95% CI, 1.45-2.68; P < .001). Conclusions and Relevance: In this cohort study, results suggest that incidental irradiation of the SAN during chemoradiotherapy may be associated with the development of AF and increased mortality. This supports the need to minimize radiation dose exposure to the SAN during radiotherapy planning and to consider close follow-up for the early detection of AF in patients receiving thoracic irradiation.


Asunto(s)
Fibrilación Atrial , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Anciano , Femenino , Fibrilación Atrial/epidemiología , Fibrilación Atrial/complicaciones , Fibrilación Atrial/fisiopatología , Neoplasias Pulmonares/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Nodo Sinoatrial/fisiopatología , Frecuencia Cardíaca , Estudios Retrospectivos , Estudios de Cohortes , Dosis de Radiación
2.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36044551

RESUMEN

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Asunto(s)
Conectoma , Insuficiencia Cardíaca , Mitocondrias Cardíacas , Retículo Sarcoplasmático , Síndrome del Seno Enfermo , Nodo Sinoatrial , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ratones , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patología , Síndrome del Seno Enfermo/patología , Síndrome del Seno Enfermo/fisiopatología , Nodo Sinoatrial/fisiopatología
4.
Circ Arrhythm Electrophysiol ; 14(10): e009957, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34592837

RESUMEN

Each heartbeat that pumps blood throughout the body is initiated by an electrical impulse generated in the sinoatrial node (SAN). However, a number of disease conditions can hamper the ability of the SAN's pacemaker cells to generate consistent action potentials and maintain an orderly conduction path, leading to arrhythmias. For symptomatic patients, current treatments rely on implantation of an electronic pacing device. However, complications inherent to the indwelling hardware give pause to categorical use of device therapy for a subset of populations, including pediatric patients or those with temporary pacing needs. Cellular-based biological pacemakers, derived in vitro or in situ, could function as a therapeutic alternative to current electronic pacemakers. Understanding how biological pacemakers measure up to the SAN would facilitate defining and demonstrating its advantages over current treatments. In this review, we discuss recent approaches to creating biological pacemakers and delineate design criteria to guide future progress based on insights from basic biology of the SAN. We emphasize the need for long-term efficacy in vivo via maintenance of relevant proteins, source-sink balance, a niche reflective of the native SAN microenvironment, and chronotropic competence. With a focus on such criteria, combined with delivery methods tailored for disease indications, clinical implementation will be attainable.


Asunto(s)
Arritmias Cardíacas/terapia , Relojes Biológicos , Nodo Sinoatrial/fisiopatología , Potenciales de Acción/fisiología , Arritmias Cardíacas/fisiopatología , Humanos , Diseño de Prótesis
5.
Sci Rep ; 11(1): 19328, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588502

RESUMEN

Heart failure (HF) is frequently accompanied with the sinoatrial node (SAN) dysfunction, which causes tachy-brady arrhythmias and increased mortality. MicroRNA (miR) alterations are associated with HF progression. However, the transcriptome of HF human SAN, and its role in HF-associated remodeling of ion channels, transporters, and receptors responsible for SAN automaticity and conduction impairments is unknown. We conducted comprehensive high-throughput transcriptomic analysis of pure human SAN primary pacemaker tissue and neighboring right atrial tissue from human transplanted HF hearts (n = 10) and non-failing (nHF) donor hearts (n = 9), using next-generation sequencing. Overall, 47 miRs and 832 mRNAs related to multiple signaling pathways, including cardiac diseases, tachy-brady arrhythmias and fibrosis, were significantly altered in HF SAN. Of the altered miRs, 27 are predicted to regulate mRNAs of major ion channels and neurotransmitter receptors which are involved in SAN automaticity (e.g. HCN1, HCN4, SLC8A1) and intranodal conduction (e.g. SCN5A, SCN8A) or both (e.g. KCNJ3, KCNJ5). Luciferase reporter assays were used to validate interactions of miRs with predicted mRNA targets. In conclusion, our study provides a profile of altered miRs in HF human SAN, and a novel transcriptome blueprint to identify molecular targets for SAN dysfunction and arrhythmia treatments in HF.


Asunto(s)
Arritmias Cardíacas/complicaciones , Insuficiencia Cardíaca/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Nodo Sinoatrial/fisiopatología , Adulto , Anciano , Arritmias Cardíacas/genética , Femenino , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , MicroARNs/análisis , Persona de Mediana Edad , ARN Mensajero/análisis , Transcriptoma , Adulto Joven
6.
Heart Rhythm ; 18(11): 1999-2008, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371195

RESUMEN

BACKGROUND: Heart rate variability (HRV) is determined by intrinsic sinoatrial node (SAN) activity and the autonomic nervous system (ANS). HRV is reduced in aging; however, aging is heterogeneous. Frailty, which can be measured using a frailty index (FI), can quantify health status in aging separately from chronological age. OBJECTIVE: The purpose of this study was to investigate the impacts of age and frailty on HRV in mice. METHODS: Frailty was measured in aging mice between 10 and 130 weeks of age. HRV was assessed using time domain, frequency domain, and Poincaré plot analyses in anesthetized mice at baseline and after ANS blockade, as well as in isolated atrial preparations. RESULTS: HRV was reduced in aged mice (90-130 weeks and 50-80 weeks old) compared to younger mice (10-30 weeks old); however, there was substantial variability within age groups. In contrast, HRV was strongly correlated with FI score regardless of chronological age. ANS blockade resulted in reductions in heart rate that were largest in 90- to 130-week-old mice and were correlated with FI score. HRV after ANS blockade or in isolated atrial preparations was increased in aged mice but again showed high variability among age groups. HRV was correlated with FI score after ANS blockade and in isolated atrial preparations. CONCLUSION: HRV is reduced in aging mice in association with a shift in sympathovagal balance and increased intrinsic SAN beating variability; however, HRV is highly variable within age groups. HRV was strongly correlated with frailty, which was able to detect differences in HRV separately from chronological age.


Asunto(s)
Envejecimiento/fisiología , Sistema Nervioso Autónomo/fisiopatología , Fragilidad/fisiopatología , Frecuencia Cardíaca/fisiología , Nodo Sinoatrial/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Am Fam Physician ; 104(2): 179-185, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383451

RESUMEN

Sinus node dysfunction, previously known as sick sinus syndrome, describes disorders related to abnormal conduction and propagation of electrical impulses at the sinoatrial node. An abnormal atrial rate may result in the inability to meet physiologic demands, especially during periods of stress or physical activity. Sinus node dysfunction may occur at any age, but is usually more common in older persons. The causes of sinus node dysfunction are intrinsic (e.g., degenerative idiopathic fibrosis, cardiac remodeling) or extrinsic (e.g., medications, metabolic abnormalities) to the sinoatrial node. Many extrinsic causes are reversible. Electrocardiography findings include sinus bradycardia, sinus pauses or arrest, sinoatrial exit block, chronotropic incompetence, or alternating bradycardia and tachycardia (i.e., bradycardia-tachycardia syndrome). Clinical symptoms result from the hypoperfusion of end organs. About 50% of patients present with cerebral hypoperfusion (e.g., syncope, presyncope, lightheadedness, cerebrovascular accident). Other symptoms include palpitations, decreased physical activity tolerance, angina, muscular fatigue, or oliguria. A diagnosis is made by directly correlating symptoms with a bradyarrhythmia and eliminating potentially reversible extrinsic causes. Heart rate monitoring using electrocardiography or ambulatory cardiac event monitoring is performed based on the frequency of symptoms. An exercise stress test should be performed when symptoms are associated with exertion. The patient's inability to reach a heart rate of at least 80% of their predicted maximum (220 beats per minute - age) may indicate chronotropic incompetence, which is present in 50% of patients with sinus node dysfunction. First-line treatment for patients with confirmed sinus node dysfunction is permanent pacemaker placement with atrial-based pacing and limited ventricular pacing when necessary.


Asunto(s)
Estimulación Cardíaca Artificial/métodos , Electrocardiografía , Frecuencia Cardíaca/fisiología , Síndrome del Seno Enfermo/fisiopatología , Nodo Sinoatrial/fisiopatología , Humanos , Síndrome del Seno Enfermo/diagnóstico , Síndrome del Seno Enfermo/terapia
8.
Mol Biol Rep ; 48(6): 5355-5362, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34195885

RESUMEN

Sick sinus syndrome (SSS) encompasses a group of conduction disorders characterized by the inability of sinoatrial node to perform its pacemaker function. Our aim was to identify genetic predictors of SSS in a prospective cohort of patients admitted to the clinic for pacemaker implantation using single-locus and multilocus approaches. We performed genotyping for polymorphic markers of CLCNKA (rs10927887), SCN10A (rs6795970), FNDC3B (rs9647379), MIR146A (rs2910164), SYT10 (rs7980799), MYH6 (rs365990), and KCNE1 (rs1805127) genes in the group of 284 patients with SSS and 243 healthy individuals. Associations between the studied loci and SSS were tested using logistic regression under recessive genetic model using sex and age as covariates. Multilocus analysis was performed using Markov chain Monte Carlo method implemented in the APSampler program. Correction for multiple testing was performed using Benjamini-Hochberg procedure. We detected an individual association between KCNE1 rs1805127*A allele and SSS in the total study group (OR 0.43, PFDR = 0.028) and in the subgroup of patients with 2nd or 3rd degree sinoatrial block (OR 0.17, PFDR = 0.033), and identified seven allelic patterns associated with the disease. SCN10A rs6795970*T and MIR146A rs2910164*C alleles were present in all seven combinations associated with SSS. The highest risk of SSS was conferred by the combination SCN10A rs6795970*T+FNDC3B rs9647379*C+MIR146A rs2910164*C+SYT10 rs7980799*C+KCNE1 rs1805127*G (OR 2.98, CI 1.77-5.00, P = 1.27 × 10-5, PFDR = 0.022). Our findings suggest that KCNE1 rs1805127 polymorphism may play a role in susceptibility to sinoatrial node dysfunction, particularly presenting as 2nd or 3rd degree sinoatrial block, and the risk-modifying effect of other studied loci is better detected using multilocus approach.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/genética , Síndrome del Seno Enfermo/genética , Anciano , Anciano de 80 o más Años , Alelos , Miosinas Cardíacas/genética , Canales de Cloruro/genética , Estudios de Cohortes , Femenino , Fibronectinas/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Genotipo , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Cadenas Pesadas de Miosina/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Pronóstico , Estudios Prospectivos , Federación de Rusia , Nodo Sinoatrial/fisiopatología , Sinaptotagminas/genética
11.
Circulation ; 144(2): 126-143, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33874740

RESUMEN

BACKGROUND: Up to 50% of the adult human sinoatrial node (SAN) is composed of dense connective tissue. Cardiac diseases including heart failure (HF) may increase fibrosis within the SAN pacemaker complex, leading to impaired automaticity and conduction of electric activity to the atria. Unlike the role of cardiac fibroblasts in pathologic fibrotic remodeling and tissue repair, nothing is known about fibroblasts that maintain the inherently fibrotic SAN environment. METHODS: Intact SAN pacemaker complex was dissected from cardioplegically arrested explanted nonfailing hearts (non-HF; n=22; 48.7±3.1 years of age) and human failing hearts (n=16; 54.9±2.6 years of age). Connective tissue content was quantified from Masson trichrome-stained head-center and center-tail SAN sections. Expression of extracellular matrix proteins, including collagens 1 and 3A1, CILP1 (cartilage intermediate layer protein 1), and POSTN (periostin), and fibroblast and myofibroblast numbers were quantified by in situ and in vitro immunolabeling. Fibroblasts from the central intramural SAN pacemaker compartment (≈10×5×2 mm3) and right atria were isolated, cultured, passaged once, and treated ± transforming growth factor ß1 and subjected to comprehensive high-throughput next-generation sequencing of whole transcriptome, microRNA, and proteomic analyses. RESULTS: Intranodal fibrotic content was significantly higher in SAN pacemaker complex from HF versus non-HF hearts (57.7±2.6% versus 44.0±1.2%; P<0.0001). Proliferating phosphorylated histone 3+/vimentin+/CD31- (cluster of differentiation 31) fibroblasts were higher in HF SAN. Vimentin+/α-smooth muscle actin+/CD31- myofibroblasts along with increased interstitial POSTN expression were found only in HF SAN. RNA sequencing and proteomic analyses identified unique differences in mRNA, long noncoding RNA, microRNA, and proteomic profiles between non-HF and HF SAN and right atria fibroblasts and transforming growth factor ß1-induced myofibroblasts. Specifically, proteins and signaling pathways associated with extracellular matrix flexibility, stiffness, focal adhesion, and metabolism were altered in HF SAN fibroblasts compared with non-HF SAN. CONCLUSIONS: This study revealed increased SAN-specific fibrosis with presence of myofibroblasts, CILP1, and POSTN-positive interstitial fibrosis only in HF versus non-HF human hearts. Comprehensive proteotranscriptomic profiles of SAN fibroblasts identified upregulation of genes and proteins promoting stiffer SAN extracellular matrix in HF hearts. Fibroblast-specific profiles generated by our proteotranscriptomic analyses of the human SAN provide a comprehensive framework for future studies to investigate the role of SAN-specific fibrosis in cardiac rhythm regulation and arrhythmias.


Asunto(s)
Fibroblastos/metabolismo , Insuficiencia Cardíaca/fisiopatología , Nodo Sinoatrial/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Vet J ; 272: 105651, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33745806

RESUMEN

Sinus arrhythmia of the dog is unique because of the pronounced alternating beat-to-beat intervals. The clustering of these short (faster rates) and long (slower rates) intervals is not just influenced by autonomic input from breathing; sinus arrhythmia can persist in the panting or apneic dog. The multiplicity of central and peripheral influences on the sinus node complicates the unraveling of the mechanisms of sinus arrhythmia. Studies of the sinus node suggest that acetylcholine can slow cellular depolarization and block sinoatrial conduction. Electrocardiographic monitoring of the dog supports this notion in that abrupt bifurcation into short and long intervals develop at lower heart rates. We sought to determine whether this phenomenon could be recapitulated in canine atrial preparations perfused with acetylcholine and whether selective pharmacologic blockade of the voltage and calcium clocks could provide insight into its mechanism. Spontaneous beat to beat (A-A) intervals were obtained from monophasic action potential recordings of perfused canine right atrial preparations before and during perfusion with acetylcholine (2-5 µM). The calcium clock was blocked with ryanodine (2-3 µM). The membrane clock was blocked with diltiazem hydrochloride (ICa,L blocker; 0.25 µM) and ZD7288 (If blocker; 3 µM). Hyperpolarization was hindered by blockade of IK,Ado/IK,Ach with tertiapin Q (100 nM) before and during acetylcholine perfusion. Acetylcholine resulted in beat clusters similar to those seen in sinus arrhythmia of the dog. Beat clusters were consistent with intermittent 2:1 and 3:1 sinoatrial conduction block. Tertiapin Q abolished this patterning suggesting a role of IK,Ado/IK,ACh in the mechanism of these acetylcholine-induced beat-to-beat patterns.


Asunto(s)
Acetilcolina/administración & dosificación , Arritmia Sinusal/veterinaria , Enfermedades de los Perros/fisiopatología , Atrios Cardíacos/efectos de los fármacos , Bloqueo Cardíaco/veterinaria , Nodo Sinoatrial/fisiopatología , Animales , Arritmia Sinusal/fisiopatología , Perros , Electrocardiografía/veterinaria , Atrios Cardíacos/fisiopatología , Bloqueo Cardíaco/inducido químicamente , Bloqueo Cardíaco/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos
14.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278629

RESUMEN

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Asunto(s)
Bradicardia/genética , Relojes Circadianos/fisiología , Electrocardiografía/métodos , Regulación de la Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , ARN/genética , Nodo Sinoatrial/fisiopatología , Animales , Bradicardia/metabolismo , Bradicardia/fisiopatología , Modelos Animales de Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Ratones
15.
PLoS One ; 15(12): e0244254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33347504

RESUMEN

Changes in intracellular calcium levels in the sinus node modulate cardiac pacemaking (the calcium clock). Trimeric intracellular cation (TRIC) channels are counterion channels on the surface of the sarcoplasmic reticulum and compensate for calcium release from ryanodine receptors, which play a major role in calcium-induced calcium release (CICR) and the calcium clock. TRIC channels are expected to affect the calcium clock in the sinus node. However, their physiological importance in cardiac rhythm formation remains unclear. We evaluated the importance of TRIC channels on cardiac pacemaking using TRIC-A-null (TRIC-A-/-) as well as TRIC-B+/-mice. Although systolic blood pressure (SBP) was not significantly different between wild-type (WT), TRIC-B+/-, and TRIC-A-/-mice, heart rate (HR) was significantly lower in TRIC-A-/-mice than other lines. Interestingly, HR and SBP showed a positive correlation in WT and TRIC-B+/-mice, while no such correlation was observed in TRIC-A-/-mice, suggesting modification of the blood pressure regulatory system in these mice. Isoproterenol (0.3 mg/kg) increased the HR in WT mice (98.8 ±â€…15.1 bpm), whereas a decreased response in HR was observed in TRIC-A-/-mice (23.8 ±â€…5.8 bpm), suggesting decreased sympathetic responses in TRIC-A-/-mice. Electrocardiography revealed unstable R-R intervals in TRIC-A-/-mice. Furthermore, TRIC-A-/-mice sometimes showed sinus pauses, suggesting a significant role of TRIC-A channels in cardiac pacemaking. In isolated atrium contraction or action potential recording, TRIC-A-/-mice showed decreased response to a ß-adrenergic sympathetic nerve agonist (isoproterenol, 100 nM), indicating decreased sympathetic responses. In summary, TRIC-A-/-mice showed decreased cardiac pacemaking in the sinus node and attenuated responses to ß-adrenergic stimulation, indicating the involvement of TRIC-A channels in cardiac rhythm formation and decreased sympathetic responses.


Asunto(s)
Potenciales de Acción , Agonistas Adrenérgicos beta/farmacología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Canales Iónicos/fisiología , Retículo Sarcoplasmático/efectos de los fármacos , Nodo Sinoatrial/fisiopatología , Animales , Atrios Cardíacos/efectos de los fármacos , Ratones , Ratones Noqueados , Nodo Sinoatrial/efectos de los fármacos
16.
Dokl Biochem Biophys ; 495(1): 304-306, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33368040

RESUMEN

In the study of the sequence of depolarization of the atrial subepicardium of rats in the short-term alcohol consumption model (the "Holiday heart" syndrome), the localization of the sources of atrial arrhythmias was determined for the first time. The difference in the excitation of the right and left atria was discovered: the right atrium is activated anterogradely from the sinoatrial node, whereas the left atrium is activated retrogradely from the ectopic focus located in the left auricular appendage.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Arritmias Cardíacas/etiología , Modelos Cardiovasculares , Nodo Sinoatrial/fisiopatología , Trastornos Relacionados con Alcohol/patología , Trastornos Relacionados con Alcohol/fisiopatología , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Simulación por Computador , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Corazón/fisiopatología , Atrios Cardíacos/fisiopatología , Masculino , Ratas
17.
Nat Commun ; 11(1): 5555, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144559

RESUMEN

It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node.


Asunto(s)
Relojes Biológicos , AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Nodo Sinoatrial/patología , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Relojes Biológicos/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Bradicardia/complicaciones , Bradicardia/patología , Carbacol/farmacología , Electrocardiografía , Femenino , Células HEK293 , Corazón/efectos de los fármacos , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Subunidades de Proteína/metabolismo , Reproducibilidad de los Resultados , Nodo Sinoatrial/fisiopatología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiopatología
18.
Sci Rep ; 10(1): 18906, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144668

RESUMEN

Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3-/-) or Cav3.1 (Cav3.1-/-) channels and double mutant Cav1.3-/-/Cav3.1-/- mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based "Ca2+ clock" mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.


Asunto(s)
Nodo Atrioventricular/fisiopatología , Bradicardia/diagnóstico , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/genética , Nodo Sinoatrial/fisiopatología , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Frecuencia Cardíaca , Ratones , Ratones Noqueados , Retículo Sarcoplasmático/metabolismo
19.
Circ Res ; 127(12): 1502-1518, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33044128

RESUMEN

RATIONALE: Cardiac pacemaker cells (PCs) in the sinoatrial node (SAN) have a distinct gene expression program that allows them to fire automatically and initiate the heartbeat. Although critical SAN transcription factors, including Isl1 (Islet-1), Tbx3 (T-box transcription factor 3), and Shox2 (short-stature homeobox protein 2), have been identified, the cis-regulatory architecture that governs PC-specific gene expression is not understood, and discrete enhancers required for gene regulation in the SAN have not been identified. OBJECTIVE: To define the epigenetic profile of PCs using comparative ATAC-seq (assay for transposase-accessible chromatin with sequencing) and to identify novel enhancers involved in SAN gene regulation, development, and function. METHODS AND RESULTS: We used ATAC-seq on sorted neonatal mouse SAN to compare regions of accessible chromatin in PCs and right atrial cardiomyocytes. PC-enriched assay for transposase-accessible chromatin peaks, representing candidate SAN regulatory elements, were located near established SAN genes and were enriched for distinct sets of TF (transcription factor) binding sites. Among several novel SAN enhancers that were experimentally validated using transgenic mice, we identified a 2.9-kb regulatory element at the Isl1 locus that was active specifically in the cardiac inflow at embryonic day 8.5 and throughout later SAN development and maturation. Deletion of this enhancer from the genome of mice resulted in SAN hypoplasia and sinus arrhythmias. The mouse SAN enhancer also directed reporter activity to the inflow tract in developing zebrafish hearts, demonstrating deep conservation of its upstream regulatory network. Finally, single nucleotide polymorphisms in the human genome that occur near the region syntenic to the mouse enhancer exhibit significant associations with resting heart rate in human populations. CONCLUSIONS: (1) PCs have distinct regions of accessible chromatin that correlate with their gene expression profile and contain novel SAN enhancers, (2) cis-regulation of Isl1 specifically in the SAN depends upon a conserved SAN enhancer that regulates PC development and SAN function, and (3) a corresponding human ISL1 enhancer may regulate human SAN function.


Asunto(s)
Arritmia Sinusal/metabolismo , Relojes Biológicos , Secuenciación de Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Frecuencia Cardíaca , Proteínas con Homeodominio LIM/metabolismo , Nodo Sinoatrial/metabolismo , Factores de Transcripción/metabolismo , Potenciales de Acción , Animales , Arritmia Sinusal/genética , Arritmia Sinusal/fisiopatología , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Humanos , Proteínas con Homeodominio LIM/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Nodo Sinoatrial/fisiopatología , Factores de Tiempo , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(30): 18079-18090, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32647060

RESUMEN

Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.


Asunto(s)
Retículo Endoplásmico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Familia de Multigenes , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Nodo Sinoatrial/fisiología , Nodo Sinoatrial/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...